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Abstract
The pointed weak energy for an arbitrarily evolving quantum state defines
a complex valued phase which is the sum of a dynamic phase and a purely
geometric phase—the pointed geometric phase. The pointed geometric phase
is concisely expressed as a time integral which depends upon the energy
uncertainty, the associated evolving state, and its orthogonal companion state.
The real part of the pointed geometric phase is to within a sign the geometric
phase for arbitrary evolutions defined by Mukunda and Simon and that of
Aharonov and Anandan for cyclic evolutions. The imaginary part of the pointed
geometric phase governs the survival probability of the initial state. Several
general rate of change relationships associated with the real and imaginary
parts of the pointed geometric phase are deduced from this concise expression,
and it is used to calculate the pointed geometric phase acquired as a spin- 1

2
particle precesses under the influence of a uniform magnetic field.

PACS numbers: 03.65.−w, 03.65.Ta, 03.65.Vf

1. Introduction

A half century ago, S Pancharatnam discovered that if a series of polarizers constrain the
polarization state of light to follow a closed three cycle along geodesic arc segments in
polarization state space (i.e., the Poincare′ sphere), then the state acquires a geometric phase
equal to half the solid angle subtended by the associated geodesic triangle [1]. Three decades
later, Berry showed that the phase acquired by a quantum system during an adiabatic cyclic
evolution is the sum of a term proportional to the time integral of the instantaneous eigenenergy
and a term proportional to an integral over the cycle in system parameter space described by
the slowly varying parameter-dependent Hamiltonian (the geometric Berry phase) [2]. A
subsequent generalized reformulation of this by Aharonov and Anandan demonstrated that
the phase change during any cyclic evolution of a quantum system can be partitioned into the
sum of a dynamical phase that is proportional to the time integral of the instantaneous mean
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value of the system Hamiltonian and a geometric phase that depends only upon the cycle
traced in state space by the evolving state [3]. These geometric phases have been observed
and measured experimentally, e.g. [4, 5], and the theory has been extended to describe the
geometric phase associated with arbitrary evolutions of quantum systems, e.g. [6, 7].

Recently a complex valued pointed weak energy that is associated with the Hilbert space
evolution of a quantum state relative to its initial state has been defined and studied from a
theoretical perspective [8, 9]. It was shown that the pointed weak energy defines an exponential
function which acts upon such an evolving state’s initial correlation amplitude and translates it
in time. The argument of this exponential function is a complex valued phase that is acquired
by the evolving amplitude relative to its initial unit value. It is shown in this paper that this
phase is the sum of a dynamical phase and a purely geometric complex phase—the pointed
geometric phase. The real part of the pointed geometric phase is—to within a sign—the
geometric phase for arbitrary evolutions defined by Mukunda and Simon (the MS phase) [10]
and—consequently—is also the Aharonov–Anandan (AA) phase for cyclic evolutions. The
imaginary part of the pointed geometric phase defines the modulus of the correlation amplitude
and therefore governs the survival probability of the initial quantum state.

The pointed geometric phase is concisely expressed as a time integral—the integrand of
which depends upon the energy uncertainty, the evolving state, and its orthogonal companion
state. Several interesting general rate of change relationships associated with the real and
imaginary parts of the pointed geometric phase, i.e. phase s-speeds and the s-speed ratio, are
deduced from this expression. As an illustrative example, this concise expression is used
to calculate the pointed geometric phase acquired as a spin- 1

2 particle precesses under the
influence of a uniform magnetic field. Time-dependent expressions for the phase s-speeds and
the s-speed ratio are also obtained and briefly discussed for this spin- 1

2 particle system.

2. Pointed weak energy and time translation

Let |ψ(t)〉 be a normalized quantum state evolving in a Hilbert space H with projective space
P consisting of all the rays of H (recall that a ray is an equivalence class [ψ] of states |ψ〉
in H which differ only in phase) and with the induced projection map � : H → P such that

|ψ〉 �̇�→ [ψ]. The pointed weak energy W0(t) associated with this state is the complex valued
quantity defined by [8]

W0(t) ≡ 〈ψ(t)|Ĥ |ψ(0)〉
〈ψ(t)|ψ(0)〉 = Re W0(t) + i Im W0(t), (1)

where the correlation amplitude appearing in the denominator of this expression satisfies
〈ψ(t)|ψ(0)〉 �= 0, and the state |ψ(t)〉 evolves according to

ih̄
d|ψ(t)〉

dt
= Ĥ |ψ(t)〉.

It is shown in [8] that

Re W0(t) = h̄

(
dχ(t)

dt

)
≡ h̄χ̇ (t) (2)

and

Im W0(t) = h̄

{
s(t)

4 − s2(t)

} (
ds(t)

dt

)
≡ h̄

{
s(t)

4 − s2(t)

}
ṡ(t). (3)

Here, χ(t) is the Pancharatnam phase at time t defined by

eiχ(t) = 〈ψ(t)|ψ(0)〉
|〈ψ(t)|ψ(0)〉| (4)
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and is the phase difference between |ψ(0)〉 and |ϕ〉, where |ϕ〉 is the state contained in the
equivalence class [ψ(0)] obtained by parallel transporting |ψ(t)〉 along the shortest geodesic
joining [ψ(t)] and [ψ(0)] in P [11]. The function s(t) is the distance separating [ψ(t)] and
[ψ(0)] in P at time t given by the generalized Fubini–Study metric defined by [12, 13]

s2(t) ≡ 4(1 − |〈ψ(t)|ψ(0)〉|2). (5)

Also shown in [8, 9] is the property that the pointed weak energy defines an exponential
function which time translates the initial state correlation amplitude at time t = 0 to its new
value at time τ > 0 via

〈ψ(τ)|ψ(0)〉 = e
i
h̄

∫ τ

0 W0(t)dt 〈ψ(0)|ψ(0)〉,
or—more precisely—since 〈ψ(0)|ψ(0)〉 = 1 and equation (1) both apply, it defines the
amplitude at time τ according to

〈ψ(τ)|ψ(0)〉 = e
i
h̄

∫ τ

0 Re W0(t)dt− 1
h̄

∫ τ

0 Im W0(t)dt . (6)

3. The pointed geometric phase

Consider the fact that the action of the Hamiltonian operator Ĥ upon the state |ψ(t)〉 can—in
general—be uniquely written as [14]

Ĥ |ψ(t)〉 = 〈H 〉|ψ(t)〉 + �H |ψ⊥(t)〉, (7)

where 〈H 〉 = 〈ψ(t)|Ĥ |ψ(t)〉,�H =
√

〈H 2〉 − 〈H 〉2, and the orthogonal companion state
|ψ⊥(t)〉 belongs to the associated Hilbert subspace which is the orthogonal complement of
the subspace containing |ψ(t)〉 and satisfies the conditions

〈ψ⊥(t)|ψ(t)〉 = 0 and �H = 〈ψ⊥(t)|Ĥ |ψ(t)〉. (8)

Equation (7) provides the following equivalent definition for the pointed weak energy when
the dual form of this equation is first used to form the scalar product with the state |ψ(0)〉 and
then this product is divided by 〈ψ(t)|ψ(0)〉 �= 0:

〈ψ(t)|Ĥ |ψ(0)〉
〈ψ(t)|ψ(0)〉 = 〈H 〉 + �H

〈ψ⊥(t)|ψ(0)〉
〈ψ(t)|ψ(0)〉 . (9)

When this is applied to the integrand of the exponent in equation (6), then the first term on the
right-hand side of equation (9) identifies

δ ≡ 1

h̄

∫ τ

0
〈H 〉 dt (10)

as a real valued dynamical phase which is acquired by the system as a result of the evolution
of the state |ψ(t)〉 over the time interval [0, τ ]. The second term in equation (9) defines the
complex valued pointed phase

β ≡ 1

h̄

∫ τ

0
�H

〈ψ⊥(t)|ψ(0)〉
〈ψ(t)|ψ(0)〉 dt (11)

which is also acquired by the system as a result of the state’s evolution over the time interval
[0, τ ].

In order to examine the geometric properties of the pointed phase, first observe that
�H is invariant under the local U(1) gauge transformation |ψ(t)〉 → eiθ(t)|ψ(t)〉 and that
this transformation implies that |ψ⊥(t)〉 → eiθ(t)|ψ⊥(t)〉 (to see this simply note that if
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|ψ(t)〉 → eiθ(t)|ψ(t)〉 and �H �= 0, then from equation (7): �H−1(Ĥ − 〈H 〉)|ψ(t)〉 →
eiθ(t)�H−1(Ĥ − 〈H 〉)|ψ(t)〉 = eiθ(t)|ψ⊥(t)〉). Then, since

〈ψ⊥(t)| e−iθ(t) eiθ(0)|ψ(0)〉
〈ψ(t)| e−iθ(t) eiθ(0)|ψ(0)〉 = 〈ψ⊥(t)|ψ(0)〉

〈ψ(t)|ψ(0)〉 ,

it can be concluded from equation (11) that the pointed phase β is invariant under local U(1)

gauge transformations.
Now consider the behaviour of equation (11) under the reparameterization |ψ(t)〉 =

|ψ ′(t ′(t))〉 ≡ |ψ ′(t ′)〉 over the interval [t ′(0), t ′(τ )] such that t ′(t) is monotone-increasing with
state end-points |ψ ′(t ′(0))〉 = |ψ(0)〉 and |ψ ′(t ′(τ ))〉 = |ψ(τ)〉. Using this parameterization,
it is easily found that since

Ĥ |ψ(t)〉 = Ĥ |ψ ′(t ′)〉 = ih̄
d

dt ′
|ψ ′(t ′)〉dt ′

dt
= Ĥ ′|ψ ′(t ′)〉dt ′

dt
, (12)

then

〈H 〉 = 〈ψ ′(t ′)|Ĥ ′|ψ ′(t ′)〉dt ′

dt
≡ 〈H ′〉dt ′

dt
(13)

and

〈H 2〉 = 〈ψ ′(t ′)|Ĥ ′2|ψ ′(t ′)〉
(

dt ′

dt

)2

≡ 〈H ′2〉
(

dt ′

dt

)2

,

so that

�H =
√

〈H ′2〉 − 〈H ′〉2
dt ′

dt
≡ �H ′ dt ′

dt
, (14)

i.e. �Hdt maps as a 1-form under this reparameterization. Furthermore, the
reparameterization |ψ(t)〉 = |ψ ′(t ′(t))〉 also implies the existence of a reparameterized
orthogonal companion state such that |ψ⊥(t)〉 = |ψ⊥′(t ′(t))〉 (to see this rearrange equation (7)
to find |ψ⊥(t)〉, substitute |ψ ′(t ′(t))〉 for |ψ(t)〉, apply equations (12), (13) and (14), and require
�H ′ �= 0). Thus,

1

h̄

∫ τ

0
�H

〈ψ⊥(t)|ψ(0)〉
〈ψ(t)|ψ(0)〉 dt = 1

h̄

∫ t ′(τ )

t ′(0)

�H ′ 〈ψ⊥′(t ′)|ψ ′(t ′(0))〉
〈ψ ′(t ′)|ψ ′(t ′(0))〉 dt ′

from which it may be concluded that the pointed phase β is invariant under this
reparameterization.

When taken together, these two invariance properties imply that β is a pure geometric
phase [10] in the sense that its value depends only upon the associated smooth evolutionary
path 
 inP and remains unchanged for any lifts to smooth monotone-increasing parameterized
evolutionary paths γ in H such that �(γ ) = 
. Therefore, equation (11) defines a geometric
phase β—the pointed geometric phase. Note that this same conclusion is reached when the
gauge and reparameterization invariance properties are analysed for the difference

β = 1

h̄

∫ τ

0
W0(t) dt − δ = −i

∫ τ

0

〈 dψ(t)

dt
|ψ(0)

〉
〈ψ(t)|ψ(0)〉 dt + i

∫ τ

0

〈
dψ(t)

dt

∣∣∣∣ψ(t)

〉
dt.

In order to emphasize the geometric nature of β, this difference may also be expressed in the
equivalent path integral form given by

β = −i
∫




〈dψ(t)|ψ(0)〉
〈ψ(t)|ψ(0)〉 + i

∫



〈dψ(t)|ψ(t)〉.
The reader is cautioned that this path integral representation for β employs a slight abuse of
notation since each term in the sum is not individually gauge invariant.
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4. Re β and the MS and AA geometric phases

Return now to the time integral of equation (9) and rewrite it as
1

h̄

∫ τ

0
W0(t) dt = δ + β.

Since δ is real and W0(t) and β are both complex valued quantities, then the last equation
implies that equation (6) can be equivalently written in (a non-polar) exponential form as

〈ψ(τ)|ψ(0)〉 = ei(δ+Re β)−Im β, (15)

where

Re β = 1

h̄

∫ τ

0
Re W0(t) dt − δ,

and

Im β = 1

h̄

∫ τ

0
Im W0(t) dt.

Substitution of equations (2) and (3) for the integrands in the last two equations yields—upon
integration—the following identities:

Re β = χ(τ) − δ (16)

and

Im β = ln
2√

4 − s2(τ )
. (17)

Here, use has been made of the fact that χ(0) = s(0) = 0. Using equations (4) and (5) it is
easily verified that—as required—both Re β and Im β are invariant under the aforementioned
gauge and reparameterization transformations.

It may be concluded from equation (16) that since χ(τ) = δ +Re β, then the Pancharatnam
phase associated with the arbitrary evolution of a state over a time interval [0, τ ] is the sum
of a dynamical phase which is defined by equation (10) and the real part of the pointed
geometric phase which depends only upon the path traced in P by the evolving state
during the interval [0, τ ]. Because of its geometric nature, it is interesting to determine
the relationship between the real pointed geometric phase and the MS and AA geometric
phases ϕMS and ϕAA, respectively. The former relationship can be established by comparing
equation (16) with the expression for ϕMS for arbitrary evolutions given by equation (4) in
[7]. There ϕMS = χMS(τ ) + δMS, where χMS(τ ) ≡ arg〈ψ(0)|ψ(τ)〉 and δMS ≡ 1

h̄

∫ τ

0 〈H 〉 dt

are the associated Mukunda–Simon Pancharatnam and dynamical phases, respectively. This
comparison readily reveals that χ(τ) = −χMS(τ ) and δ = δMS so that

Re β = χ(τ) − δ = −χMS(τ ) − δMS = −(χMS(τ ) + δMS) = −ϕMS.

The relationship between Re β and ϕAA can also be obtained in a similar manner by
considering a cyclic evolution of a state such that |ψ(τ)〉 = eiφ |ψ(0)〉. In this case, χ(τ) = −φ

so that equation (16) yields

Re β = −φ − δ = −(φ + δ).

When the sum in parenthesis in this equation is compared with the expression for the AA
geometric phase ϕAA = φAA + δAA for cyclic evolutions given by equation (3) in [3], it is
found that φ = φAA and δ = δAA. Here φAA ≡ arg〈ψ(0)|ψ(τ)〉 and δAA ≡ 1

h̄

∫ τ

0 〈H 〉 dt

are the associated Aharonov–Anandan Pancharatnam and dynamical phases, respectively.
Consequently, the relationship between the real pointed geometric phase and ϕAA is

Re β = −(φAA + δAA) = −ϕAA.

Clearly, this same ‘differing by a sign’ relationship is required to hold for both the MS and AA
phases since the AA phase is the MS phase for the special case that the evolution is cyclic.
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5. The significance of Im β

Now consider the imaginary part of the pointed geometric phase. It can be inferred from
equation (17) that since

e−Im β = e
− ln 2√

4−s2(τ ) = 1
2

√
4 − s2(τ ) = |〈ψ(τ)|ψ(0)〉|, (18)

then the imaginary part of the pointed geometric phase defines the modulus of the correlation
amplitude at time τ and therefore—in general—governs the survival probability Pr(τ ) ≡
|〈ψ(τ)|ψ(0)〉|2 = e−2Im β of the initial state. For the special case that the evolution is cyclic,
then s(τ ) = s(0) = 0 so that equation (17) becomes

Im β = 0

and

β = Re β = −ϕAA. (19)

Observe that equation (18) enables the complex valued exponential form for the correlation
amplitude given by equation (15) to be equivalently expressed in the convenient polar form
〈ψ(τ)|ψ(0)〉 = 1

2

√
4 − s2(τ ) ei(δ+Re β) with Pr(τ ) = 1 − 1

4 s2(τ ).
Berry has identified a geometric amplitude factor for a quantum system undergoing a non-

dissipative adiabatic evolution [15]. This factor is associated with the transition amplitude
at t → +∞ for finding the system in a state different from the adiabatic eigenstate in
which it was prepared at t → −∞. Although the probability for such a transition is
exponentially weak and of order e− 1

ε (here ε is a small adiabatic parameter), for certain
systems with time-dependent complex Hermitian Hamiltonians there exists an additional
geometric exponential factor of unit order. For such two state systems with instantaneous
eigenstates |ν±(εt)〉 it is found that this transition probability is to good approximation given
by Pr(+∞) ≡ |〈ν−(+∞)|�(+∞)〉|2 ≈ e−�d e�g . Here the initial state of the system is assumed
to be |ν+(−∞)〉; |�(+∞)〉 is the associated evolved system state at t → +∞; e−�d is a non-
geometric dynamical factor of order e− 1

ε with �d defined by equation (11) in [15], and e�g is
a purely geometric factor with �g defined by equation (13) in [15]. The exponent �g derives
its geometric character from its singular dependence upon the analytic continuation of the
associated Hamiltonian’s evolutionary path in its parameter space.

It is instructive to ascertain similarities that may exist between the geometric amplitude
factor e−Im β of 〈ψ(τ)|ψ(0)〉 and Im β and Berry’s geometric quantum amplitude factor
and its concomitant geometric phase angle �g . In particular, the observations that both
Pr(τ ) = e−2Im β and Pr(+∞) ≈ e−�d e�g = e−(�d−�g) ≡ e−� share a common exponential
form and that Im β and �g each possess certain geometric attributes suggest that these
quantities may be more intimately related. However—as the following straightforward
comparisons show—this is generally not the case: (i) 〈ψ(τ)|ψ(0)〉 and 〈ν−(+∞)|�(+∞)〉
have very different meanings, i.e. since Pr(τ ) is the survival probability for state |ψ(0)〉 at
time t = τ , whereas Pr(+∞) is the contemporaneous probability at time t → +∞ that
the system adiabatically transitions from the state |�(+∞)〉 to state |ν−(+∞)〉 when the
system was initially at time t → −∞ in state |ν+(−∞)〉, then 〈�(+∞)|ν+(−∞)〉 rather
than 〈ν−(+∞)|�(+∞)〉 serves as the associated survival probability amplitude analogue to
〈ψ(τ)|ψ(0)〉; (ii) 〈ν−(+∞)|�(+∞)〉 is defined strictly for an adiabatic evolution and is an
adiabatic approximation, whereas 〈ψ(τ)|ψ(0)〉 is exactly valid and is defined for an arbitrary
evolution in which |ψ〉 need not be an eigenstate of the associated system Hamiltonian; (iii)
the exponent 2 Im β is geometric and does not contain a dynamical term, whereas � does and
is the difference �d − �g , and (iv) the geometric nature of Im β follows from its association
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with an evolutionary path in projective Hilbert space, whereas that of �g is derived from the
analytic continuation of a Hamiltonian curve in its parameter space. It can be concluded from
these comparisons that—not only are Im β and �g geometrically defined differently—but also
that Im β specifies a geometric amplitude factor e−Im β of 〈ψ(τ)|ψ(0)〉 that—in general—is
distinct from the Berry geometric amplitude factor that is associated with 〈ν−(+∞)|�(+∞)〉.

6. Rate of change relationships for the pointed geometric phase

The concise representation for β given by equation (11) is useful for describing the rates
of change of Re β and Im β with respect to the Fubini–Study distance. In particular, using
equations (4) and (5), along with the fact that h̄−1�Hdt = 2−1ds [16], in equation (11) yields

dβ = 1

h̄
�H

〈ψ⊥(t)|ψ(0)〉
〈ψ(t)|ψ(0)〉 dt = 1

2

√
4 − s2

⊥
4 − s2

ei(χ⊥−χ) ds,

s �= 2, or

dβ

ds
=

∣∣∣∣dβ

ds

∣∣∣∣ ei(χ⊥−χ),

where ∣∣∣∣dβ

ds

∣∣∣∣ = 1

2

√
4 − s2

⊥
4 − s2

(20)

is the modulus phase s-speed. Here, s and s⊥ are the Fubini–Study metric distances from
|ψ(t)〉 to |ψ(0)〉 and from |ψ⊥(t)〉 to |ψ(0)〉, respectively, and χ and χ⊥ are the associated
Pancharatnam phases. The associated real and imaginary phase s-speeds are defined by

d Re β

ds
=

∣∣∣∣dβ

ds

∣∣∣∣ cos(χ⊥ − χ) (21)

and

d Im β

ds
=

∣∣∣∣dβ

ds

∣∣∣∣ sin(χ⊥ − χ), (22)

respectively.
Although the real and imaginary phase s-speeds depend upon both s and s⊥ (via the

modulus phase s-speed) and the difference χ⊥ − χ (via the argument of trigonometric co-
functions), their ratio depends only upon the Pancharatnam phase difference. In particular,
dividing equation (21) by equation (22) provides the following s-speed ratio which describes
how a change in Re β relates to a change in Im β:

d Re β

d Im β
= cot(χ⊥ − χ). (23)

(Obviously, an analogous s-speed ratio describing the change in Im β due to a change in Re β

is obtained from the reciprocal of this equation.) This expression shows—for example—that
for first quadrant Pancharatnam phase differences, the greatest change in Re β associated with
a change in Im β occurs for small phase differences.
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7. An example: the pointed geometric phase for a cyclic evolution

The purpose of this section is to illustrate aspects of the theory developed above by first
using equation (11) to calculate the pointed geometric phase β acquired after one period of
a cyclic evolution induced by the action of a uniform magnetic field upon a spin- 1

2 particle
with magnetic moment µ. If this uniform magnetic field B is oriented along the z-axis of
a three-dimensional Cartesian reference frame, then the interaction Hamiltonian in this rest
frame is Ĥ = −µBσ̂z, where σ̂z is a Pauli spin operator which acts upon the associated
orthogonal spin basis eigenkets |±〉 according to the rule σ̂z|±〉 = ±|±〉. If the spin direction
is fixed at an angle θ with respect to the positive z-axis, then at any time t the normalized
system state is given by

|ψ(t)〉 = eiαt cos
θ

2
|+〉 + e−iαt sin

θ

2
|−〉,

where α = µB

h̄
. It is clear from this that the evolution of |ψ(t)〉 is periodic with period τ = πh̄

µB

and

|ψ(0)〉 = cos
θ

2
|+〉 + sin

θ

2
|−〉

so that

〈ψ(t)|ψ(0)〉 = cos αt − i cos θ sin αt (24)

and

s2(t) = 4 sin2 αt sin2 θ.

It is also readily determined that

〈H 〉 = −µB〈σz〉 = −µB cos θ

and

〈H 2〉 = µ2B2
〈
σ 2

z

〉 = µ2B2

so that

�H = µB sin θ. (25)

In order to calculate β using equation (11) it is necessary to select the orthogonal
companion state |ψ⊥(t)〉 that satisfies conditions (8). Straightforward inspection shows that

|ψ⊥(t)〉 = −eiαt sin
θ

2
|+〉 + e−iαt cos

θ

2
|−〉

satisfies these conditions and that

〈ψ⊥(t)|ψ(0)〉 = i sin θ sin αt. (26)

Using this along with equations (24) and (25) in equation (11) yields

Im β = µB sin2 θ

h̄

∫ πh̄
µB

0

[
sin αt cos αt

1 − sin2 θ sin2 αt

]
dt = 0

and [17]

Re β = −µB sin2 θ cos θ

h̄

∫ πh̄
µB

0

[
sin2 αt

cos2 αt + cos2 θ sin2 αt

]
dt

= [αt cos θ − tan−1(cos θ tan αt)]
t= πh̄

µB

t=0

= π cos θ − π

= −(π − π cos θ),
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where use is made of the complex conjugate of equation (24) and the fact that arg〈ψ(0)|ψ(t)〉 =
tan−1(cos θ tan αt). Thus—as required—β = Re β = −(φAA + δAA) = −ϕAA and
equation (19) is satisfied.

Now consider the s-speeds associated with this system as it evolves with time. It is easily
deduced from equation (26) that χ⊥ = π

2 (because eiχ⊥ = 〈ψ⊥(t)|ψ(0)〉|〈ψ⊥(t)|ψ(0)〉|−1 =
i). Using this and the right triangle defined by equation (24) which has χ as the fourth quadrant
reference angle, cos αt as the length of the side adjacent to χ and cos θ sin αt as the length of
the side opposite to χ , it is found that

cos(χ⊥ − χ) = sin χ = − cos θ sin αt√
1 − sin2 θ sin2 αt

and

sin(χ⊥ − χ) = cos χ = cos αt√
1 − sin2 θ sin2 αt

.

Substitution of these results along with the fact that (from equation (20))∣∣∣∣dβ

ds

∣∣∣∣ = sin θ sin αt

2
√

1 − sin2 θ sin2 αt

into equations (21) and (22) yields the time-dependent phase s-speed expressions

d Re β

ds
= − sin θ cos θ sin2 αt

2(1 − sin2 θ sin2 αt)

and
d Im β

ds
= sin θ sin αt cos αt

2(1 − sin2 θ sin2 αt)
.

Thus, during one cycle with period τ and 0 < θ < π
2 ,

d Re β

ds
� 0 when 0 � αt � π so that the

associated phase accumulates negatively with changing s during a cycle. In contrast to this,
d Im β

ds
� 0 when 0 � αt � π

2 , whereas d Im β

ds
� 0 when π

2 < αt � π . In this case, the survival
probability for the initial state diminishes until t = τ

2 , after which it increases to its unit value
at t = τ .

Also, observe that dividing the first of the last two equations by the second yields the
associated s-speed ratio

d Re β

d Im β
= − cos θ tan αt = tan χ.

Here use has been made of equation (24) and the fact that tan χ = Im 〈ψ(t)|ψ(0)〉
Re 〈ψ(t)|ψ(0)〉 . Hence, this

result is that of equation (23) when χ⊥ = π
2 and it is easily seen from this that—as required for

first quadrant Pancharatnam phase differences—the value of this derivative is greatest when
χ ≈ π

2 .

8. Closing remarks

Pointed weak energy has been used to identify a complex valued geometric phase β—
the pointed geometric phase—that is associated with an arbitrary evolution of a quantum
state over a time interval [0, τ ]. This phase can be computed directly from a new and
concise representation expressed as a time integral which depends upon the energy uncertainty,
the associated evolving state, and its orthogonal companion state. Several new rate of change
results have been obtained from this representation. Two of these results are phase s-speed
expressions which describe how the real and imaginary parts of the pointed geometric phase
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vary with the Pancharatnam phases and the Fubini–Study metric distances of the evolving
state and its orthogonal companion relative to the initial state. An associated s-speed ratio
has also been obtained which provides a simple Pancharatnam phase-dependent relationship
between changes in the real and imaginary parts of the pointed geometric phase.

The real and imaginary parts of the pointed geometric phase exhibit several interesting
properties. In particular, the negative real part of the pointed geometric phase has been shown
to be identical to the MS geometric phase for arbitrary evolutions (and consequently to the
AA geometric phase for cyclic evolutions) and the imaginary part of the pointed geometric
phase has been shown to (i) govern the survival probability of the evolving state; (ii) provide
for a simple polar form representation of the correlation amplitude that is expressed in terms
of the Fubini–Study metric distance, the dynamical phase, and Re β, and (iii) differ from the
geometric phase concomitant with Berry’s geometric quantum amplitude factor. When taken
together, these properties suggest that β defines a new complex valued geometric phase.
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